
Novell AppWare Foundation

White Paper

July 1993

(c) 1993 Novell, Inc. All rights reserved.
Novell, the N design, and NetWare are registered trademarks, and AppWare,
AppWare Bus, AppWare Foundation, AppWare Loadable Module, and Novell
Visual AppBuilder are trademarks of Novell, Inc.

Adobe Type Manager and PostScript are registered trademarks of Adobe
Systems Incorporated. AppleTalk, Macintosh, and MPW are registered
trademarks, and TrueType is a trademark of Apple Computer, Inc. OS/2 is a
registered trademarks of International Business Machines Corporation.
Windows is a registered trademark, and Visual Basic is a trademark of
Microsoft Corporation. UNIX is a registered trademark of UNIX Systems
Laboratories, Inc. in the U.S.A. and in other countries. USL is a wholly owned
subsidiary of Novelle, Inc.

In today's business environment, software development organizations
continue to strive toward one major objective: increased developer
productivity. Every organization finds it nearly impossible to stay on their
development schedule, keep up with the needs of their users and keep the
development budget under control.

The heterogenous nature of today’s computing environment requires
developers to maintain versions of any given application for multiple
platforms. Having an application that ran on several platforms was
considered a competitive advantage in the ’80s. Today’s software
marketplace demands that applications run on several platforms.

This portability issue is further complicated by the recent proliferation of
platforms, technologies and development environments. Organizations must
choose from a variety of operating systems like DOS, UNIX, OS/2 and NT;
different graphical user interfaces (GUIs) like Macintosh, Microsoft Windows,
Motif and OpenLook; and numerous networking conventions including
NetWare, AppleTalk, and TCP/IP. The issues become more complex every day.

The continuous need to increase productivity and the ever-increasing
complexity of cross-platform portability have motivated many software
development organizations to look for a single development environment
that addresses both challenges. Novell recognizes the challenges developers
face, and has designed AppWare, a system for developing network
applications. Figure 1 shows the AppWare architecture (see page 3 of the
hard copy).

What Is the AppWare Foundation?

The AppWare Foundation is one of the two major components of the
AppWare environment. The AppWare Foundation provides 3GL application
programmers with a common, cross-platform set of application programming
interfaces (APIs) to multiple GUIs, operating systems, and network services.
The AppWare Foundation allows developers to maintain a single-source base
for all development platforms.

The AppWare Foundation is comprised of the Universal Component System
technology which Novell acquired with Software Transformation, Inc. Other
components include the CPI-C interfaces for host connectivity; the X/Open®
distributed transaction processing APIs, which are supported by Tuxedo; and
support for Apple's Compound Document Architecture and Microsoft's Object
Linking and Embedding technology.

Novell's goal in developing the AppWare Foundation is to create a completely
functional network development environment with an architecture that
enhances programmer productivity and application performance. As the
AppWare Foundation continues to evolve, it will provide even greater support
for network services such as directory services, document management,
messaging and database.

The AppWare Foundation Architecture

The AppWare Foundation architecture maximizes several
characteristics developers require to successfully create today's
network applications. These include:

● Application performance. Applications based on the AppWare
Foundation provide the same level of performance as applications
based on native implementations.

● Toolkit functionality. The AppWare Foundation provides
developers all the functionality they need—GUI support as well as
support for operating system services and application connectivity.

● Toolkit modularity. The AppWare Foundation architecture can
be scaled, based upon the specifications of each application.

● Toolkit extensibility. The AppWare Foundation toolkit enables
developers to extend functionality by implementing features not
directly provided by the toolkit.

● Development migration path. The AppWare Foundation

architecture provides a method of mixing new and legacy code, since
most development organizations cannot afford to migrate an entire
application to a new development platform all at once.

● Integration with other tools. The architecture allows
developers to work with their favorite third-party tools and easily
integrate their own tools.

To incorporate these characteristics, the AppWare Foundation was
implemented with a focus on six architectural elements (see Figure 2
on page 5 of the hard copy):

● Complete solution

● Superset of platform functionality

● Scalable architecture

● Native implementations for each platform

● Open system architecture

● Layered architecture

The following sections describe how the AppWare Foundation achieves
these goals.

A Complete Solution

Currently, the portability challenge entails much more than simply
supporting a variety of GUI platforms. In fact, meeting the need for cross-
platform applications that maximize each platform’s features is far more
difficult than most GUI portability issues. And although connectivity issues
have only recently become important, almost every new application coming
to market needs a distributed architecture, focusing the attention of today’s
developers on connectivity issues.

As a result, it is important that the AppWare Foundation cover all the areas a
programmer has to address with state-of-the-art, distributed applications. To
meet these demands, the AppWare Foundation currently provides
functionality in three areas: operating system or foundation series,
connectivity and user interface series (see Figure 3 on page 6 of the hard
copy).

Component Series and Components

AppWare Foundation is a collection of software modules called software
components. These components share many characteristics with
traditional code libraries, but there are important differences. Similar to
a library, an individual component is a collection of utility routines that
is reusable within and among applications. Components are
implemented as modules using C and as classes using C++.
Components encapsulate their routines with their associated data
elements; some components rely on and inherit capabilities from other
components.

The AppWare Foundation collects the various types of services
available on supported platforms and divides them into three major
areas of functionality: the Foundation Series, the Connectivity Series
and the User Interface Series. Within these series, the AppWare
Foundation currently provides more than 35 component families, such
as Memory, File, Button, Window, Item, and Graph (see Figure 3 on
page 6 of the hard copy). Each component family consists of core
functionality and extensions to the core.

Core components contain the most efficient implementation of a
component family's basic features. For example, the core component
of the Edit Text Family supports features such as multiple lines of text;
scrollable viewing; clipboard cut, copy and paste; single font in a view;
maximum 32,767 characters; and left, center, and right justification.

Extensions are implementations of a family beyond these core
functions. The MultiFont Extension of Edit Text, for example, supports
multiple fonts in a view. Some component families, such as Graph,
provide a great number of extensions. Other families, such as Font,
currently have no extensions. Extensions allow developers to scale the
size of AppWare Foundation to provide only the necessary functionality,
therefore increasing performance.

The Foundation Series

The Foundation Series provides developers operating system services
such as memory management, data management, file management,
font selection, application internationalization, and device
management.

In the area of memory management, for example, AppWare Foundation
provides routines to bypass common memory module limitations, such
as 64KB segments and limits on available handles. The Memory
Component provides routines for allocating, locking, unlocking, resizing
and deallocating memory from the heap (see Figure 4 on page 8 of the
hard copy).

In file management, AppWare Foundation provides standard I/O
functions, file and directory management, resource management
facilities, and a way to deal with user preferences in a platform-
independent manner.

To support flow of control issues, AppWare Foundation provides an
error-handling facility and incorporates its own polymorphic message-
passing system. The AppWare Foundation message system is
implemented as a hand-crafted layer on top of the native message
system. This design allows the developer to gain access to the native
message system.

Within the Foundation Series, the Font Component provides support for
platform-independent font selection and management. The Character
Component provides support for processing character data or text
independently of language and character encoding. This is also
supported by international extensions in several other software
component families. The Foundation Series also supports device
management, including support for printers, keyboard control, system
control and graphics output to non-screen devices.

The Connectivity Series

The Connectivity Series provides inter- and intra-application
connectivity and communication facilities for standalone or mixed
computing environments (see Figure 5 on page 9 of the hard copy).
The Connectivity Series supports: named pipes and sockets, inter-
application messages (datagrams), object linking and embedding
(OLE), Apple Edition Manager (P & S) and clipboard management.

The AppWare Foundation supports the creation, opening, querying and
closing of named pipes. Pipes provide a file-like interface for streamed
communication between tasks. A pipe is created much like a file. Once
created, a pipe may be opened by another task to exchange data with
the pipe's creator.

Named pipes can be used in a distributed application environment. In
this case, a server creates a named pipe as a published service and
clients can then access the pipe by name. With the Pipe Network
Extension, named pipes can also be accessed by remote clients.

The User Interface Series

The user interface is a crucial part of most applications, since many
users base their impressions of an application on how the application

looks and how easy it is to use. From a developer perspective, the user
interface typically consumes a large percentage of the engineering
resources required for application development (see Figure 6 on page
10 of the hard copy).

Because of its critical nature, much effort has been devoted to
developing AppWare Foundation's sophisticated user interface
facilities. The User Interface Series provides complete GUI support and
manages a superset of operating system interface objects like
windows, lists and buttons.

Its facilities include a fully nestable window manager, virtual viewports,
multi-font text, embedded graphics for all objects, universal edit-in-
place, and a context-sensitive help manager.

The AppWare Foundation currently provides two layers of user
interface facilities. For situations where only simple dialogs are
required, the Dialog Component provides a set of functions, messages
and data structures that support a variety of dialogs. The Dialog
Component supports the design and development of most of the modal
dialogs found in applications. A special function is provided to easily
display message boxes, also called alerts.

For more complex interfaces, the AppWare Foundation provides built-in
controls that can be nested. These controls include windows, voids and
boxes, which usually contain buttons, boxes, edit text areas, display
areas, lists, sliders and tables. A large variety of menu types are also
available. To provide more flexibility, a sophisticated GUI data
management facility allows the developer to associate any
combination of text and graphics inside the controls.

The User Interface Series currently supports the following GUI
standards: MS Windows, Apple Macintosh and UNIX Motif, with support
for OS/2 standards pending.

Superset Functionality

The goal of all platform portability toolkits is to provide the same
functionality on all platforms. This may sound simple, but it’s actually quite
difficult. For example, almost all applications allow their users to enter text in
one form or another; text-editing ranges from basic editing, such as editable
data fields in a communications package, to highly sophisticated word
processing. Features available on all platforms, like scrollable views, are no
problem. But how should the compatibility package handle features that are
not available on all platforms, like multiple fonts in a view, undo capability,
text areas greater than 32KB characters.

Platform portability toolkits typically take one of two approaches: either they
provide only common features (least-common-denominator toolkits) or they
provide all the features (superset functionality). The least-common-
denominator approach is very efficient, but meets few functionality
requirements. Providing a true superset of the features available on each
platform is probably impossible.

The term "superset functionality" is used to describe the AppWare
Foundation because those features that can be implemented on every
platform are implemented on every platform. AppWare Foundation currently
provides a wide range of support for operating system services, GUI services
and connectivity in a deep, broad manner.

For example, in the Foundation Series, the File Component provides support
for file I/O, file system management (copying, renaming and directory
traversal), temporary file support, file aliases, and access to file and directory
attributes. The Table Component from the User Interface Series provides
support for tables with dividers, the ability to resize the tables, the ability to
select multiple cells within the table, the ability to reorder table entries, and
the ability to put various types of data into the table cells.

AppWare Foundation also supports many specific features of different GUI
environments, including:

● The two types of windows supported by XWindows systems:
widgets ("heavyweight" windows) and gadgets ("lightweight" windows)

● Child window functionality

● A method to port RTF hypertext help for MS Windows to all
platforms

● Printing support for all platforms

And since the AppWare Foundation is an extensible toolkit, developers can
add functionality through either the C or C++ interfaces.

A Scalable Architecture

The goal of a system that provides superset functionality is to enable
developers to produce applications that are as efficient and feature-rich as
those written with native code. To meet this goal, a toolkit must be
developed to utilize the services provided by native operating systems while
implementing any missing capabilities using lower-level facilities of the
system. The AppWare Foundation offers the most efficient implementation

for developers because it provides multiple implementations based on the
capabilities of native operating systems and the requirements of
applications.

When a developer decides which features are needed, the AppWare
Foundation provides a component appropriate for the situation. For example,
a developer needing single-font text editing on MS Windows would not select
the Edit Text component that provides multifont editing. Instead, he or she
would select a more efficient component, single-font editing component built
on top of the MS Windows edit control.

Three AppWare Foundation features support scalability. First, functionality is
provided in discrete component modules—developers use only the
components needed. Next, the AppWare Foundation provides multiple
implementations of functionality in any given component family so a
developer can evaluate the choices in each family and select the desired
level of functionality. Third, all components within a component family share
the same API, so developers don’t have to rewrite calls to implement
different sets of features within a component family. As a result of these
features, the AppWare Foundation provides the functionality developers need
without adversely affecting the size or performance of an application.

Fully Native Implementation

There are two basic approaches to writing a toolkit such as the AppWare
Foundation. The first is to develop a virtual abstraction (or toolkit emulation
package) that is the same for all platforms; the second is to handcraft the
toolkit on all platforms.

The AppWare Foundation was developed using the second approach. The
system was handcrafted for each environment, and the different platform
implementations share very little code. All implementations are built using
native language and tools. And since the AppWare Foundation works
alongside native code, a developer can incrementally port an application to
the AppWare Foundation to protect the value of existing code. Because of
this approach, the AppWare Foundation buys the developer efficiency, native
look and feel, and compatibility with native calls.

Efficiency

Benchmarks of applications based on the AppWare Foundation
technology against the most efficient native implementations show
consistently identical performance between the two applications —
except when the AppWare Foundation implementation is faster. This is
because the AppWare Foundation is built using the same efficient
techniques native application developers use. AppWare Foundation

improves the native operating systems in weak areas, so the AppWare
Foundation implementations are sometimes faster.

Look and Feel

The look and feel of a system developed to the AppWare Foundation is
100% native because the AppWare Foundation is the native GUI —
rather than an emulation of the native GUI. As operating system
suppliers improve their native toolkits, the AppWare Foundation
improves with them. As a result, applications evolve automatically.

Long-Term Compatibility

Native implementations of the AppWare Foundation ensure
compatibility with native systems in other ways. For example, the
AppWare Foundation can read and write native resources and
maintains compatibility with native GUI builders, including Microsoft's
Visual C++, Borland's Resource Workshop and Novell's Visual
AppBuilder. The AppWare Foundation is also compatible with native
message systems, allowing developers to use the native message
system when necessary. This means AppWare Foundation applications
can interact transparently with non-AppWare Foundation applications.
With the evolution of AppWare, the AppWare Foundation will become
the common point of entry for network services.

Open System

The AppWare Foundation's open architecture gives developers a great deal of
versatility and provides several major benefits that increase programmer
productivity.

● AppWare Foundation works with many languages such as C, and
C++

● AppWare Foundation is architected for both procedural and
object-oriented programming, allowing a development team to start
with an API-style interface and then incrementally transition to an
object-oriented framework.

● AppWare Foundation integrates with native interface extensions
including CDefs, MDefs, LDefs, controls, new classes and new widgets.

● AppWare Foundation integrates with important new technologies.
For example, the AppWare Foundation integrates with Adobe Type
Manager (ATM) via the back door, allowing the AppWare Foundation to
provide features such as text rotation through ATM (or TrueType).

● Developers are free to choose their platform, compiler, linker and
debugger. The AppWare Foundation works with Symantec, Borland,
Microsoft, MPW, Lightspeed, SABER, and GNU compilers, as well as
with Multiscope, Codeview, and SADE debuggers.

AppWare Foundation provides a stable base for developers of high-level
application tools such as frameworks, class libraries, 4th-generation
languages and visual programming tools. Tool suppliers can focus on
productivity issues instead of platform portability problems.

Its open architecture also allows developers to integrate the AppWare
Foundation with a variety of third-party tools. This provides developers with
more functionality, including PostScript, online help engines, Visual Basic,
Borland’s Resource Workshop and Microsoft's Dialog Editor.

A Layered Architecture

The AppWare Foundation provides two layers built on top of the native
operating system as shown in Figure 7 (see page 14 of the hard copy).
AppWare Foundation Object Classes are a C++ class library
implemented with the AppWare Foundation Libraries. The benefits of
this layered architecture include:

● Ability to Extend. AppWare Foundation Object Classes are easy
to extend. Rather than learning the intricacies of each platform,
developers using the AppWare Foundation Object Classes can review
the portable AppWare Foundation C source code rather than deal with
the native code when deriving new classes. This allows developers to
create a subclass and supply new virtual methods for the desired
behaviors.

● Facilitated migration from C to C++. AppWare Foundation
Object Classes integrate well with both AppWare Foundation objects
and native C code. Since AppWare Foundation Object Classes are built
on top of the AppWare Foundation Libraries, AppWare Foundation
Object Classes objects can be converted to and from AppWare
Foundation objects. C code can easily take advantage of new AppWare
Foundation Object Classes-based C++ classes and still compile under
any ANSI C compiler.

● Power of C++. AppWare Foundation Object Classes provide a
robust, object-oriented class library for C++ developers. A combination
of class derivation and instantiation encourages code reuse.

This architecture provides a development team with a maximum

amount of flexibility in an ongoing development effort. What's more,
the flexibility is available on all development platforms.

Summary

The real proof of a toolkit's value is whether users successfully build
commercial-quality applications with it. Developers have used the different
technologies found in the AppWare Foundation to successfully implement
more than a million lines of code in real-world applications. This success is
directly related to focusing on the needs of developers, not on the limitations
of operating systems. This developer-oriented approach ensures an
application-driven product and Novell's commitment to work toward
improving developer productivity.

As AppWare continues to mature, the AppWare Foundation will play an
important role in providing a portability platform that allows distributed
applications to directly access the features and functions of Novell's network
operating systems.

